New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire Actuators
نویسندگان
چکیده
The elbow joint is a complex articulation composed of the humeroulnar and humeroradial joints (for flexion-extension movement) and the proximal radioulnar articulation (for pronation-supination movement). During the flexion-extension movement of the elbow joint, the rotation center changes and this articulation cannot be truly represented as a simple hinge joint. The main goal of this project is to design and assemble a medical rehabilitation exoskeleton for the elbow with one degree of freedom for flexion-extension, using the rotation center for proper patient elbow joint articulation. Compared with the current solutions, which align the exoskeleton axis with the elbow axis, this offers an ergonomic physical human-robot interface with a comfortable interaction. The exoskeleton is actuated with shape memory alloy wire-based actuators having minimum rigid parts, for guiding the actuators. Thanks to this unusual actuation system, the proposed exoskeleton is lightweight and has low noise in operation with a simple design 3D-printed structure. Using this exoskeleton, these advantages will improve the medical rehabilitation process of patients that suffered stroke and will influence how their lifestyle will change to recover from these diseases and improve their ability with activities of daily living, thanks to brain plasticity. The exoskeleton can also be used to evaluate the real status of a patient, with stroke and even spinal cord injury, thanks to an elbow movement analysis.
منابع مشابه
Design, Fabrication and Intelligent Control of the Gripper Based on SMA Actuators
This paper presents the designing, simulation, fabrication and control of a gripper actuated by Shape Memory Alloy (SMA) wire. The presented gripper has the advantage of the small linear displacement of the slider connected to the SMA wire, and can convert the linear displacement into angular movement of the gripper fingers. In this study, design and simulation processes have been done by two p...
متن کاملOn the Desing and Test of a Prototype of Biped Actuated by Shape Memory Alloys
In this paper the design of a biped robot actuated with Shape Memory Alloy (SMA) springs with minimum degrees of freedom is presented. SMA springs are a class of smart materials that are known for their high power to mass and volume ratios. It was shown that utilizing spring type of SMAs have many advantages as large deformation, smooth motion, silent and clean movement compared to ordinary typ...
متن کاملDesign and Modeling of an Upper Extremity Exoskeleton
This paper presents the design and modeling results of an upper extremity exoskeleton mounted on a wheel chair. This new device is dedicated to regular and efficient rehabilitation training for weak and injured people without the continuous presence of a therapist. The exoskeleton being a wearable robotic device attached to the human arm, the user provides information signals to the controller ...
متن کاملTowards Wearable Lightweight Assistive Robotics: Novel Actuation Principles, Applications, and Challenges
Conventional wearable robots comprised of rigid joints and links are very limited in providing proper assistance for people in need on a daily basis. Commonly used actuators and sensors make it challenging for researchers and engineers to design compact and lightweight wearable systems which would be truly mobile and non-restrictive for the wearer. In our work, we are focused on developing ligh...
متن کاملTowards the Development of Advanced Exoskeletons for Supporting the Human Activities
Exoskeletons find application in many fields and can be divided into three main categories: 1) haptic interfaces; 2) power amplifiers; 3) rehabilitation and assistance systems. A number of research groups have developed a number of robotic solutions for supporting the motor activities of the upper limb by integrating advanced technologies in terms of actuation, sensors, control and mechanisms. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017